Research Article | | Peer-Reviewed

Acid-generating Potential of Mine Wastes from the Perkoa Polymetallic Zinc Deposit in Central-western Burkina Faso

Received: 6 September 2025     Accepted: 22 September 2025     Published: 12 November 2025
Views:       Downloads:
Abstract

Perkoa polymetallic zinc deposit, formed in a context of massive volcanogenic sulphides, generated large volumes of potentially reactive wastes during its exploitation due to the predominance of sulphide minerals. The aim of this study is to assess the acid-generating potential, i.e. the potential to generate acid mine drainage (AMD), of these wastes. To this end, four representative samples of these wastes were collected in a targeted manner at the Perkoa mine site, including waste rock, mine tailings and crusher waste. The analyses focused on determining the mineralogy by X-ray diffraction, the physico-chemical parameters (pH, electrical conductivity), the sulphur and carbon contents, and the acidity and neutralization potentials. The results reveal, with the exception of waste rock, acidic pH values (< 5), high electrical conductivity (> 500 µS/cm) and high sulphide content, mainly pyrite, sphalerite and pyrrhotite. The acid potential (AP) shows high values between 5 and 1000 kg CaCO3/t. On the other hand, the neutralization potential (NP) is low, with NPR (NP/AP) ratios below 1 and negative NNP (NP-AP) values in the range of -1300 to -5 kg CaCO3/t. These results show that these wastes would not be able to neutralise any acid that might be generated as a result of their oxidation. The most reactive acidogenic minerals are pyrite and pyrrhotite. Acid-producing mineral species are represented by silicates such as actinolite, microcline and chlorite. In summary, these results confirm a high risk of AMD development from mine wastes.

Published in International Journal of Environmental Monitoring and Analysis (Volume 13, Issue 6)
DOI 10.11648/j.ijema.20251306.11
Page(s) 290-302
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2025. Published by Science Publishing Group

Keywords

Mine Wastes, Acid Mine Drainage, Perkoa, Burkina Faso

References
[1] MEMC, (2023). Annuaire statistique 2022 du Ministère de l’Energie, des Mines et des Carrières. Annuaire statistique 2022 du Ministère de l’Energie, des Mines et des Carrières.
[2] Chopard, A. (2017). Évaluation environnementale de minerais sulfurés polymétalliques basée sur une approche minéralogique pluridisciplinaire (Thèse de doctorat, Université du Québec en Abitibi-Témiscamingue). Université du Québec en Abitibi-Témiscamingue. 424p.
[3] Kagambega, N. (2017). Solutions techniques pour l’atténuation des impacts environnementaux liés à l’activité minière et étude de facteurs aggravants. Thèse de doctorat en génie de l’environnement de l’Université de Laval (Québec, Canada), 282 p.
[4] Aubertin, M., Bussière, B., Bernier, L., Chapuis, R., Julien, M., Belem, T., Simon, R., Mbonimpa, M., Benzaazoua, M. (2002). La gestion des rejets miniers dans un contexte de développement durable et de protection de l'environement. Congrès annuel de la Société canadienne de génie civil. Article No. GE-045. Montréal, Québec, Canada.
[5] ELAW (Environmental Law Alliance Worldwide), (2010). Guide pour l’évaluation des EIE des projets miniers (2010). USA, 130 p. Environmental Law Alliance Worldwide. (2010). Guide pour l’évaluation des études d’impact environnemental (EIE) des projets miniers (130 p.).
[6] Poulard, F., Daupley, X., Didier, C., Pokryszka, Z., d’Hugues, P., Charles, N., Dupuy, J.-J., & Save, M. (2017). Exploitation minière et traitement des minerais (Tome 6, Collection « La mine en France », 79 p.). Bureau de Recherches Géologiques et Minières (BRGM).
[7] Aubertin, M., Bussière, B., James, M., Mbonimpa, M., & Chapuis, R. P. (2013). Revue de divers aspects liés à la stabilité géotechnique des ouvrages de retenue de résidus miniers. Partie II: Analyse et conception. Déchets Sciences et Techniques, 64(18), 38-50.
[8] Erazola, M., (2013). L’encapsulation des résidus miniers acides dans le pergélisol québécois : est-ce une pratique durable ? (Essai). Université de Sherbrooke. 96 p.
[9] MEND, (2009). Prediction manual for drainage chemistry from sulphidic geologic materials (No. Report 1.20.1).
[10] Ethier, M. P., (2018). Évaluation de la performance d’un système de recouvrement monocouche avec nappe surélevée pour la restauration d’un parc à résidus miniers abandonnés.
[11] Toubri, Y., (2022). Integrating multidisciplinary modeling tools to support upstream mine waste management. Thèse de doctorat. Polytechnique Montréal. 322 p.
[12] Forcier, K., (2023). Sélection d’isolats fongiques en association avec quelques plantes pionnières du site Aldermac à drainage minier acide dans la région de Rouyn-Noranda en Abitibi-Témiscamingue (Maîtrise). Université Laval, Québec, Canada. 159 p.
[13] L’Hermite, P., (2023). Modélisation des écoulements dans des sites de stockage de résidus miniers (These de doctorat). Sorbonne université. 288 p.
[14] Mouafo, V. T., (2023). Contrôle du DMA des stériles du projet Lac Guéret de Mason Graphite à l’aide d’amendements alcalins. Mémoire de maîtrise. Polytechnique Montréal.
[15] Kagambèga, N., Sawadogo, S., Bamba, O., Zombré, P., Galvez, R., (2014). Acid mine drainage and heavy metals contamination of surface water and soil in south west Burkina Faso-West Africa 2, 9-19.
[16] Ouedraogo, B., Kagambèga, N., Ouédraogo, M., (2018). Méthodes prédictives géochimiques statiques et plan de fermeture de mine. Cas de la mine d’or de Youga—Burkina Faso. Journal des sciences 18, 13_23.
[17] Marcoux, E., Ouedraogo, M. F., Feybesse, J. L., Milesi, J. P., Prost, A. E., (1988). Géochimie et géochronologie isotopiques: âge Pb/Pb à 2120±41 M. a. des corps sulfurés massifs à Zn-Ag de Perkoa (Burkina Faso). Comptes Rendus de l’Académie des Sciences, Série II, Mécanique, Physique, Chimie, Sciences de l’Univers, Sciences de la Terre, 306, 589-594.
[18] Napon, S., (1988). Le Gisement d’amas sulfuré (ZN-AG) de Perkoa dans la province du Sangyé (Burkina Faso-Afrique de l’Ouest) : cartographie, étude pétrographique, géochimique et métallogénique. Thèse de doctorat. Université Franche Comte Besançon. 307 p.
[19] Ratomaharo, V. S., (1990). Utilisation des données minéralogiques et géochimiques pour la reconstitution lithostratigraphique de l’encaissant volcano-sédimentaire du gîte d’amas sulfuré (Zn) protérozoïque inférieur de Perkoa (Burkina Faso). Thèse de doctorat. Université Pierre et Marie Curie, Paris 6.
[20] Schwartz, M. O., Melcher, F., (2003). The Perkoa Zinc Deposit, Burkina Faso. Economic Geology 98(7), 1463-1485.
[21] Smuts, W., 2010. Perkoa Zinc on the comeback trail: due diligence in progress: project development. Inside Mining 3, 6-9.
[22] Bado, F. I., Kagambèga, N., & Yameogo, A. (2024). Kinetics of neutralization of polymetallic mining discharges from the Perkoa zinc deposit in central-western Burkina Faso. Journal of Environmental Science and Engineering, 8(3), 1-13.
[23] Thiombiano, Y. (2020). Optimisation de la séquence d’extraction à la mine de Perkoa, cas de la zone 310-400 (Mémoire de maîtrise, Université Laval). Université Laval. 132 p.
[24] Guira, Y., (2020). Gestion des résidus miniers : cas de la mine d’amas sulfures de Perkoa - Burkina Faso (Master). Université Joseph KI-ZERBO. 79 p.
[25] Bado, I. F., Kagambega, N. et Yameogo, A., (2024). Geochemistry of Mining Discharges from the polymetallic Deposit of the Perkoa Underground Zinc Mine in Central western Burkina Faso - West Africa. Orient. J. Chem., Vol. 40(6), 1809-1817. ISSN: 0970 - 020X, ONLINE ISSN: 2231-5039.
[26] Klein, C., Hurlbut, C. S., Jr. (1993). Manual of mineralogy (21ᵉ éd.). John Wiley & Sons, Inc. 681p. ISBN 978-0-471-59955-7.
[27] Taylor, J. C., & Hinczak, I. (2001). A practical guide to the understanding of the method and successful phase quantifications (Rietveld made easy). The Authors. 201 p. ISBN 0975079808.
[28] Guinebretière, R. (2002). Diffraction des rayons X sur échantillons polycristallins Lavoisier. 287 p. ISBN 978-2-7462-0557-4.
[29] Villeneuve, M., (2004). Évaluation du comportement géochimique à long terme de rejets miniers à faible potentiel de génération d’acide à l’aide d’essais cinétique (Maîtrise). Université de Montréal. 323 p.
[30] Collon, P., (2003). The evolution of the quality of water in the abandoned mines of the lorrain iron basin: from laboratory experiments to in situ modelling. Thèse de doctorat, Institut National Polytechnique de Lorraine, 247 p.
[31] Brunet, J. F., Coste, B. (2000). Bibliographie préliminaire à la gestion des DMA de Rosia Poieni (Roumanie). Bureau de Recherches Géologiques et Minières (BRGM) rp50626-fr. 116 p.
[32] Miller, S. D., Jeffery, J. J., Wong, J. W. C., (1991). Use and Misuse of the Acid Base Account for “AMD” Prediction. Presented at the Proceedings of the 2nd International Conference on the Abatement of Acidic Drainage, Montreal, Canada, pp. 489-506.
[33] Gordio, A., Kagambèga, N., Bamba, O., Sako, A., & Miningou, M. Y. W. (2014). Prediction of acid mine drainage occurrence at the Inata gold mine - Burkina Faso, West Africa. Academia Journal of Environmental Sciences, 2(3), 043-051.
[34] Sobek, A. A., Schuller, W. A., Freeman, J. R., and Smith, R. M. (1978). Field and laboratory methods applicable to overburden and minesoils. US EPA 600/2-78/054, Industrial Environmental Research Laboratory, Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, Ohio. 218 p.
[35] Lawrence, R. W., Scheske, M., (1997). A method to calculate the neutralization potential of mining wastes. Environmental Geology 32, 100-106.
[36] Chtaini, A., (1999). Contrôle du drainage minier acide à l’aide de boues alcalines d’usines de pâtes à papiers. Thèse de doctorat, Université de Sherbrooke 316 p.
[37] Jambor, J. L., Dutrizac, J. E., Raudsepp, M., (2007). Measured and computed neutralization potentials from static tests of diverse rock types. Environ Geol 52, 1019-1031.
[38] Nordstrom, D. K. (2011). Mine waters: Acidic to circumneutral. Elements, 7(6), 393-398.
[39] Blowes, D. W., Ptacek, C. J., Jambor, J. L., Weisener, C. G., Paktunc, D., Gould, W. D., & Johnson, D. B. (2014). The geochemistry of acid mine drainage. In Treatise on Geochemistry (Vol. 9, pp. 131-190). Elsevier.
[40] Younger, P. L., Banwart, S. A., & Hedin, R. S. (2002). Mine Water: Hydrology, Pollution, Remediation. Springer Science & Business Media. 442 p. ISBN 978-1-4020-0138-3
[41] Verburg, R., Bezuidenhout, N., Chatwin, T., Ferguson, K., (2009). The global acid rock drainage guide (GARD Guide). Mine Water and the Environment 28, 305-310.
[42] International Network for Acid Prevention (INAP). (2018). The Global Acid Rock Drainage Guide (GARD Guide).
[43] Nordstrom, D. K., & Alpers, C. N. (1999). Geochemistry of acid mine waters. In G. S. Plumlee & M. J. Logsdon (Éds.), The environmental geochemistry of mineral deposits: Part A: Processes, methods and health issues (pp. 133-160). Society of Economic Geologists.
[44] Bussière, B., Guittonny, M. (Eds.), (2021). Hard rock mine reclamation: from prediction to management of acid mine drainage, 1st ed. CRC Press, Boca Raton. 409 p.
[45] Rimstidt, J. D., & Vaughan, D. J. (2003). Pyrite oxidation: A state-of-the-art assessment of the reaction mechanism. Geochimica et Cosmochimica Acta, 67(5), 873-880.
[46] Akcil, A., Koldas, S., (2006). Acid Mine Drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production, 14, 1139-1145.
[47] Sverdrup, H. U., (1990). The Kinetics of Base Cation Release Due to Chemical Weathering. Lund University Press.
[48] Kwong, Y. J. (1993). Prediction and prevention of acid rock drainage from a geological and mineralogical perspective. Canada Centre for Mineral and Energy Technology, Ottawa, Ont. Technical Report MIC-96-03209/XAB, 72 p.
[49] Jambor, J. L., Dutrizac, J. E., Raudsepp, M., Groat, L. A., (2003). Effect of Peroxide on Neutralization‐Potential Values of Siderite and Other Carbonate Minerals. J of Env Quality 32, 2373-2378.
[50] Parbhakar-Fox, A., & Lottermoser, B. G. (2015). A critical review of acid rock drainage prediction methods and practices. Minerals Engineering, 82, 107-124.
[51] Lottermoser, B. G. (2007). Mine wastes: Characterization, treatment and environmental impacts (3rd ed., 304 p.). Springer Science & Business Media.
[52] Nordstrom, D. K. (2015). Hydrogeochemistry and microbiology of mine drainage. Treatise on Geochemistry, 9, 1-40.
[53] Lindsay, M. B. J., Moncur, M. C., Bain, J. G., Jambor, J. L., Ptacek, C. J., & Blowes, D. W. (2015). Geochemical and mineralogical aspects of sulfide mine tailings. Applied Geochemistry, 57, 157-177.
[54] Blowes, D. W., Al, T., Lortie, L., Gould, W. D., Jambor, J. L. (1995). Microbiological, chemical, and mineralogical characterization of the kidd creek mine tailings impoundment, Timmins area, Ontario. Geomicrobiology Journal, 13. 13-31
[55] Morin, K., & Hutt, N. (1997). Environmental geochemistry of minesite drainage: Practical theory and case studies (1st ed.). MDAG Publishing. ISBN 0-9682039-0-6.
[56] Lapakko, K. A., (1994). Evaluation of Neutralization Potential Determinations for Metal Mine Waste and a Proposed Alternative. ASMR 1994, 129-137.
[57] Diaby, N., Dold, B., Pfeifer, H.-R., Holliger, C., Johnson, D. B., Hallberg, K. B., (2007). Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Environ. Microbiol. 9, 298-307.
[58] Whitworth, A. J., Forbes, E., Verster, I., Jokovic, V., Awatey, B., & Parbhakar-Fox, A. (2022). Review on advances in mineral processing technologies suitable for critical metal recovery from mining and processing wastes. Cleaner Engineering and Technology, 7, 100451.
[59] Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments—An emerging remediation technology. Environmental Health Perspectives, 116(3), 278-283.
[60] Bouzahzah, H., Benzaazoua, M., Bussière, B., Plante, B., (2014). Revue de littérature détaillée sur les tests statiques et les essais cinétiques comme outils de prédiction du drainage minier acide. Environnement, Ingénierie & Développement 66, 14-31.
[61] Bouzahzah, H, Benzaazoua, M., Bussière, B., Plante, B., (2014). Recommandations sur l’utilisation des outils de prédiction du drainage minier acide. Environnement, Ingénierie & Développement, 68, 1-12.
[62] Plante, B., Bussiere, B., Bouzahzah, H., Benzaazoua, M., Demers, I., Kandji, E.-H. B., (2015). Revue de littérature en vue de la mise à jour du guide de caractérisation des résidus miniers et du minerai (Recherche No. Rapport PU-2013-05-806). Université du Québec en Abitibi-Témiscamingue (UQAT)/Unité de recherche et de service en technologie minérale (URSTM), Rouyn-Noranda, Québec, Canada. 61 p.
Cite This Article
  • APA Style

    Bado, I. F., Yameogo, A., Tarpaga, A. A., Kagambega, N. (2025). Acid-generating Potential of Mine Wastes from the Perkoa Polymetallic Zinc Deposit in Central-western Burkina Faso. International Journal of Environmental Monitoring and Analysis, 13(6), 290-302. https://doi.org/10.11648/j.ijema.20251306.11

    Copy | Download

    ACS Style

    Bado, I. F.; Yameogo, A.; Tarpaga, A. A.; Kagambega, N. Acid-generating Potential of Mine Wastes from the Perkoa Polymetallic Zinc Deposit in Central-western Burkina Faso. Int. J. Environ. Monit. Anal. 2025, 13(6), 290-302. doi: 10.11648/j.ijema.20251306.11

    Copy | Download

    AMA Style

    Bado IF, Yameogo A, Tarpaga AA, Kagambega N. Acid-generating Potential of Mine Wastes from the Perkoa Polymetallic Zinc Deposit in Central-western Burkina Faso. Int J Environ Monit Anal. 2025;13(6):290-302. doi: 10.11648/j.ijema.20251306.11

    Copy | Download

  • @article{10.11648/j.ijema.20251306.11,
      author = {Isso Felix Bado and Adama Yameogo and Abdoul Aziz Tarpaga and Nicolas Kagambega},
      title = {Acid-generating Potential of Mine Wastes from the Perkoa Polymetallic Zinc Deposit in Central-western Burkina Faso
    },
      journal = {International Journal of Environmental Monitoring and Analysis},
      volume = {13},
      number = {6},
      pages = {290-302},
      doi = {10.11648/j.ijema.20251306.11},
      url = {https://doi.org/10.11648/j.ijema.20251306.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijema.20251306.11},
      abstract = {Perkoa polymetallic zinc deposit, formed in a context of massive volcanogenic sulphides, generated large volumes of potentially reactive wastes during its exploitation due to the predominance of sulphide minerals. The aim of this study is to assess the acid-generating potential, i.e. the potential to generate acid mine drainage (AMD), of these wastes. To this end, four representative samples of these wastes were collected in a targeted manner at the Perkoa mine site, including waste rock, mine tailings and crusher waste. The analyses focused on determining the mineralogy by X-ray diffraction, the physico-chemical parameters (pH, electrical conductivity), the sulphur and carbon contents, and the acidity and neutralization potentials. The results reveal, with the exception of waste rock, acidic pH values ( 500 µS/cm) and high sulphide content, mainly pyrite, sphalerite and pyrrhotite. The acid potential (AP) shows high values between 5 and 1000 kg CaCO3/t. On the other hand, the neutralization potential (NP) is low, with NPR (NP/AP) ratios below 1 and negative NNP (NP-AP) values in the range of -1300 to -5 kg CaCO3/t. These results show that these wastes would not be able to neutralise any acid that might be generated as a result of their oxidation. The most reactive acidogenic minerals are pyrite and pyrrhotite. Acid-producing mineral species are represented by silicates such as actinolite, microcline and chlorite. In summary, these results confirm a high risk of AMD development from mine wastes.
    },
     year = {2025}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Acid-generating Potential of Mine Wastes from the Perkoa Polymetallic Zinc Deposit in Central-western Burkina Faso
    
    AU  - Isso Felix Bado
    AU  - Adama Yameogo
    AU  - Abdoul Aziz Tarpaga
    AU  - Nicolas Kagambega
    Y1  - 2025/11/12
    PY  - 2025
    N1  - https://doi.org/10.11648/j.ijema.20251306.11
    DO  - 10.11648/j.ijema.20251306.11
    T2  - International Journal of Environmental Monitoring and Analysis
    JF  - International Journal of Environmental Monitoring and Analysis
    JO  - International Journal of Environmental Monitoring and Analysis
    SP  - 290
    EP  - 302
    PB  - Science Publishing Group
    SN  - 2328-7667
    UR  - https://doi.org/10.11648/j.ijema.20251306.11
    AB  - Perkoa polymetallic zinc deposit, formed in a context of massive volcanogenic sulphides, generated large volumes of potentially reactive wastes during its exploitation due to the predominance of sulphide minerals. The aim of this study is to assess the acid-generating potential, i.e. the potential to generate acid mine drainage (AMD), of these wastes. To this end, four representative samples of these wastes were collected in a targeted manner at the Perkoa mine site, including waste rock, mine tailings and crusher waste. The analyses focused on determining the mineralogy by X-ray diffraction, the physico-chemical parameters (pH, electrical conductivity), the sulphur and carbon contents, and the acidity and neutralization potentials. The results reveal, with the exception of waste rock, acidic pH values ( 500 µS/cm) and high sulphide content, mainly pyrite, sphalerite and pyrrhotite. The acid potential (AP) shows high values between 5 and 1000 kg CaCO3/t. On the other hand, the neutralization potential (NP) is low, with NPR (NP/AP) ratios below 1 and negative NNP (NP-AP) values in the range of -1300 to -5 kg CaCO3/t. These results show that these wastes would not be able to neutralise any acid that might be generated as a result of their oxidation. The most reactive acidogenic minerals are pyrite and pyrrhotite. Acid-producing mineral species are represented by silicates such as actinolite, microcline and chlorite. In summary, these results confirm a high risk of AMD development from mine wastes.
    
    VL  - 13
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • Sections